

AVR1300: Using the XMEGA ADC

Features
• Up to 12 bit resolution
• Up to 2M samples per second
• Signed and unsigned mode
• Selectable gain
• Pipelined architecture
• 4 virtual channels
• Result comparator
• Automatic calibration
• Internal connection to DAC output
• Driver source code included

1 Introduction
The XMEGA™ ADC module is a high-performance Analog-to-Digital converter
capable of conversion rates up to 2 million samples per second (Msps) with a
resolution of 12 bits. Flexible multiplexer (MUX) settings, integrated gain stage and
four virtual input channels make this a flexible module suitable for a wide range of
applications, such as data acquisition, embedded control and general signal
processing.

This application note describes the basic functionality of the XMEGA ADC with
code examples to get up and running quickly. A driver interface written in C is
included as well.

Advanced usage, such as Direct Memory Access (DMA) and the XMEGA Event
System, is outside the scope of this application note. Please refer to the device
datasheets and other relevant application notes for details.

Figure 1-1. ADC Overview

Virtual
Channel 0

Virtual
Channel 1

Virtual
Channel 2

Virtual
Channel 3

Gain

P
in

 in
pu

ts
In

te
rn

al
 in

pu
ts Pipelined

ADC Block

Result Register 0

Result Register 0

Result Register 0

Result Register 0

Event
System

8-bit
Microcontrollers

Application Note

PRELIMINARY

Rev. 8032B-AVR-08/09

2 AVR1300
8032B-AVR-08/09

2 Module Overview
This section provides an overview of the functionality and basic configuration options
of the ADC. Section 3 then walks you through the basic steps to get you up and
running, with register descriptions and configuration details.

2.1 Pipeline Architecture and Virtual Channels
The ADC conversion block has a 12-stage pipelined architecture capable of sampling
several signals in parallel. There are four input selection MUXes with individual
configurations. The separate configuration settings for the four MUXes can be viewed
as virtual channels, with one set of result registers each, all sharing the same ADC
conversion block. Refer to Figure 1-1 above.

The MUX outputs can be sampled every four ADC clock cycles and each signal
propagates through the pipeline, where one bit is converted at each stage. In this way
the ADC is capable of sampling one signal every four ADC clock cycles, even if each
signal must propagate through all stages in the pipeline before the result is ready in
the result register. The propagation time for one single signal conversion through the
pipeline is 7 ADC clock cycles for 12-bit conversions and 5 cycles for 8-bit
conversions. If Gain is used the propagation time increases by one cycle. At full
utilization the ADC delivers one result every ADC clock cycle. The relation between
the XMEGA peripheral clock and the ADC clock is described in Section 2.8.

Figure 2-1 below shows a simplified 4-stage pipeline during conversion of two input
signals. The figure shows that once the signal has been sampled into the pipeline, the
first stage converts the MSB of the first signal. While the second stage is converting
the next bit of the signal, the first stage now converts the MSB of the second signal.

 AVR1300

 3

8032B-AVR-08/09

Figure 2-1. Simplified ADC pipeline with two propagating signals

33 2 1 0

3

2 1 0

23

3

3 2 1 0

23

3

2

3 2 1 0

23

3

2

1 1 0

1

3 2 1 0

3

2

1

0

Result Register 0

3 2 1 0

Result Register 1

3 2 1 0

1 2

3 4

5

C
ha

nn
el

 0

C
ha

nn
el

 1

Note that it is also possible to repeatedly convert signals from a single channel. The
pipeline can sample and convert a signal from one channel even if there is already a
previous sample from that channel on its way through the pipeline.

All the four virtual channels have one MUX Control register (CHnMUXCTRL), one
Channel Control register (CHnCTRL) and one Result register pair
(CHnRESL/CHnRESH) each, in addition to several control bits distributed in shared
registers.

2.2 Gain Stage
The ADC has an internal gain stage which can be configured to amplify a voltage to
allow measurement of smaller voltages.

This is a shared gain stage that can be used by all the channels. When the channel is
configured to use gain, the gain stage is inserted between the channel input selection
MUX and the conversion block. The available gain settings are 1x, 2x, 4x, 8x, 16x,
32x and 64x. The Gain Factor bit field (GAINFACT) in the Channel Control register
(CHnCTRL) set the gain factor for the channel.

4 AVR1300
8032B-AVR-08/09

It is possible to have individual gain settings for all the virtual channels.

The propagation delay for an ADC sample through the ADC increases by one ADC
clock cycle when using the gain stage.

Using the gain setting of 1x gives no amplification, but it can be used to give the
propagation delay for a channel with no amplification identical to channels that use
amplification. However, to minimize the analog signal path for best possible ADC
results it is recommended to configure the channel without gain unless having
identical propagation delay is important in the application.

2.3 Conversion Mode
The conversion block can be put in the unsigned or signed conversion mode.

Signed mode can be used as input mode for both differential and single-ended inputs,
while unsigned mode is only available for the single-ended or internal input.

In unsigned mode the conversion range is from ground to the reference voltage (more
precisely to Vref – ΔV). In signed mode the range is from negative to positive
reference voltage. The figure below shows the difference in conversion ranges.

Figure 2-2. Unsigned and signed conversion mode

The figure shows that the unsigned mode gives higher resolution on positive values
than signed mode, but cannot convert negative values. The signed mode can convert
negative values, but at the cost of lower resolution overall.

When the ADC uses differential inputs signed mode must be used, while in the other
modes both signed and unsigned mode can be used.

Note that conversion mode is configured for the whole ADC, not individually for each
channel, which means that the ADC must be put in the signed mode even if only one
of the channels uses differential inputs.

The conversion mode is configured using the Conversion Mode bit (CONVMODE) in
Control Register B (CTRLB).

Note that even if the difference between two inputs could be negative, voltages below
GND or above VCC should under no circumstances be applied to any input pin.

 AVR1300

 5

8032B-AVR-08/09

2.4 Multiplexer Settings
The MUXes are used to select input signal for each virtual channel. There are four
distinct configuration choices that can be selected using the Channel Input mode
bitfield (INPUTMODE) in the Channel Control register (CHnCTRL):

• Differential Input
• Differential Input with Gain Stage
• Single-ended Input
• Internal Input
The positive and negative inputs are selected using the MUX Positive Input and MUX
Negative Input bitfields (MUXPOS and MUXNEG) in the Channel Mux Control register
(MUXCTRL). An alternative name for the MUX Positive Input bitfield used in the
header files is MUX Internal Input (MUXINT) when measuring internal inputs.

In devices with two ADCs, the inputs can only be connected to the corresponding
port. Meaning that ADC A can be connected to PORT A and ADC B can be
connected to PORT B. The positive input can be connected to any one of the eight
input signals of corresponding port. The negative input can be connected to one of
the first four input signals (PIN0 – PIN3) of the corresponding port for differential
without Gain and the second four input signals (PIN4 –PIN7) for differential with Gain.

In devices with only one ADC but several analog ports, the positive input can be
connected to any of the available input signals from both PORT A and PORT B. The
negative input can be connected to one of the first four input signals (PIN0 – PIN3) of
the corresponding port for differential without Gain and the second four input signals
(PIN4 –PIN7) for differential with Gain.

Refer to the datasheet to determine the number of ADC and the devices pin
configuration.

Note that even if the difference between two inputs could be negative, voltages below
GND or above VCC should under no circumstances be applied to any input pin.

2.4.1 Differential Input

With this setting, the MUX measures the difference between two input signals.

Figure 2-3. Differential input without gain stage

P
in

 in
pu

ts

Pipelined
ADC Block

P
in

 in
pu

ts

Positive input

Negative input

2.4.2 Differential Input with Gain Stage

This setting is almost identical to differential input without gain stage. With this setting
the gain stage is inserted in the signal path for this channel, providing up to 64 times

6 AVR1300
8032B-AVR-08/09

amplification of the differential input signal. When the gain stage is used, the
propagation delay through the ADC block is increased by 1 ADC clock cycle.

Figure 2-4. Differential input with gain stage

P
in

 in
pu

ts

Pipelined
ADC Block

P
in

 in
pu

ts

Positive input

Negative input

Gain

Note that the gain stage does not load the input and external signal source will see
very high input impedance for channels that use the gain stage. This is useful for
measuring weak signal sources. Details can be found in the datasheet for the device.

2.4.3 Single-ended Input

With this setting, the ADC measures the value of one input signal. The difference
between this setting and differential measurement is that the negative input is always
connected internally in the single-ended setting. If the ADC block is configured for
signed mode single-ended input the negative input is connected to GND.

Figure 2-5. Single-ended input in signed mode

Pipelined
ADC Block

Positive input

Negative input

P
in

 in
pu

ts

If the ADC block has been configured for unsigned mode the negative input is
connected to Vref/2 – ΔV. ΔV is a fixed internally generated voltage of approximately
0.05*Vref. This offset needs to be measured by connecting the positive input to
ground (GND). The offset will typically correspond to a value of about 200 when
measured.

The advantage of ΔV is that it will be possible to measure a negative offset in the
ADC block because ΔV will be larger than any offset. ΔV will allow the XMEAG ADC
to be used in applications where it is essential to know and compensate for offset
errors. The disadvantage is that some of the upper range is lost since any
measurement above Vref – ΔV will saturate to the top value.

 AVR1300

 7

8032B-AVR-08/09

In addition to connecting the negative input the ADC will in unsigned single ended
mode automatically add 2048 to the result. This gives an possible output range from 0
to 4096 as opposed to -2048 to 2047 for signed mode.

Figure 2-6. Single-ended input in unsigned mode

P
in

 in
pu

ts

2.4.4 Internal Input

With this setting, the MUX measures one of several internal signals. The negative
input is always connected to GND while the positive input can be connected to one of
the following internal sources: Temperature Reference, DAC Internal Output, VCC/10
(for supply voltage measurement) or Bandgap Reference. Note that two channels can
select different internal sources. They are not limited to one common setting, as
opposed to the shared gain stage setting.

The internal DAC input can be used for calibration of the DAC. For more information
about DAC configuration, please refer to the device datasheet or the application note
“AVR1301: Getting Started with the XMEGA DAC”.

The Bandgap Reference could be used to measure an unknown external reference
like a battery voltage. With a measurement of a known voltage (the Bandgap
Reference, 1.1 V) using an unknown reference, it is easy to calculate the voltage of
the external reference.

Figure 2-7. Internal input in signed mode

Pipelined
ADC Block

Positive input

Negative input

In
te

rn
al

 in
pu

ts

8 AVR1300
8032B-AVR-08/09

Figure 2-8. Internal input in unsigned mode

Pipelined
ADC Block

Positive input

Negative input

Vref
2 - ΔV

Note that if no other modules are using the Bandgap Reference. It must be turned on
using the Bandgap Enable bit (BANDGAP) in the Reference Control register
(REFCTRL).

The same goes for the Temperature Reference, which is not shared with any other
modules. The Temperature Reference is turned on using the Temperature Reference
Enable bit (TEMPREF). Also note that there is a certain settling time for both
Bandgap and Temperature Reference, hence should be enabled in due time before
starting any conversions.

Note that input sampling speed of the internal inputs can be slower than the
maximum conversion range of the device. (example: 100ksps/2Msps) See device
datasheet for more information.

2.5 Conversion Result

2.5.1 Signed mode

In signed mode the conversion result from the ADC is:

TOPGAIN
V
VVRES

REF

INNINP **−
=

VINP is the positive input and VINN is the negative input to the ADC. GAIN corresponds
to the gain setting used. GAIN is 1 if gain is not used. TOP is the top value given by
the configured resolution, which is 2048 for 12 bit mode and 128 for 8 bit mode.

In signed mode the result is returned as a signed number represented on a two's
complement format where the MSB represents the sign bit. In 12-bit right adjusted
mode, the sign bit (bit 11) is padded to bits 12-15 to create a signed 16-bit number
directly. In 8-bit mode, the sign bit (bit 7) is padded to the entire high byte.

With 12-bit resolution the range from –VREF to +VREF will be -2048 to +2047 (0xF800 -
0x07FF).

2.5.2 Unsigned mode

In unsigned mode the conversion result from the ADC is:

 AVR1300

 9

8032B-AVR-08/09

TOPGAIN
V

VVRES
REF

INP **)(Δ−−
=

VINP is the positive input and VINN is the internally connected negative input to the
ADC. GAIN corresponds to the gain setting used. GAIN is 1 if gain is not used. TOP
is the top value given by the configured resolution. For 12 bit mode TOP is 4096 and
8 bit mode TOP is 256.

The positive offset given by ΔV is typically 0.05*VREF. This typically corresponds to a
measurement result of approximately 200 when the input pin is connected to ground.
In order to measure this offset accurately the ADC should be configured as it will be
used in the application (ie. voltages, speed and other settings) and the input pin
should be connected externally to ground.

This offset is not compensated for automatically, and the software needs to subtract
the measured positive offset from the conversion results.

With 12-bit resolution the range from GND to VREF – ΔV will be from approximately
200 to +4095 (0x00C8 - 0x0FFF).

2.6 Result Presentation
The ADC can be configured to present conversion results in the following formats:

• 12 bits, right adjusted
• 8 bits, right adjusted
• 12 bits, left adjusted

Note that a lower resolution gives faster conversions, as there are fewer pipeline
stages for the signal samples to propagate through. Therefore, selecting result
presentation is a tradeoff between resolution and conversion speed.

The ADC resolution is configured using the Conversion result Resolution bitfield
(RESOLUTION) in Control Register B (CTRLB).

2.7 Voltage References
The application can choose between the following voltage references (VREF) for
conversion results:

• Internal reference of 1.0 V
• Internal reference of VCC / 1.6 V
• External reference (VREF)

Note that the external reference pin VREF is shared with the DAC module. The voltage
reference is configured using the Reference Selection bitfield (REFSEL) in the
Reference Control register (REFCTRL).

Note that for the external reference (VREF) the maximum voltage to be used is Vcc –
0.6V.

10 AVR1300
8032B-AVR-08/09

2.8 Conversion Speed
The ADC clock is derived from a prescaled version of the XMEGA peripheral clock,
where the available factors are 1/4, 1/8, 1/16, 1/32, 1/64, 1/128, 1/256 and 1/512. The
ADC clock has to be set within the minimum and maximum recommended speed for
the ADC module to guarantee correct operation. The ADC Clock is configured using
the Clock Prescaler register (PRESCALER).

Please consult the device datasheet for details on recommended minimum and
maximum ADC clock speeds.

Note that having a fast ADC clock gives a short propagation time for each sample, but
does not mean that you cannot sample a signal at a much slower rate. For instance,
an application could sample at a rate of 10kHz even if the ADC clock is 8MHz.
However, it is not possible to sample at a rate higher than one fourth of the ADC clock
speed since the maximum ADC clock is 1/4th of the peripheral clock. See device
datasheet for more information.

2.9 Free-running Mode
Instead of manually starting conversions by setting one or more of the Start
Conversion bits (CHnSTART) in Control Register A (CTRLA) or assigning events to
virtual channels, the ADC can be put in free-running mode. This means that a number
of channels are repeatedly converted in sequence as long as the mode is active.

The Channel Sweep Selection bitfield (SWEEP) in the Event Control register (EVCTRL)
selects which channels to include in free-running mode. You can choose between
channel 0 only, channel 0 and 1, channel 0 to 2 or all four channels.

Note that the same bits are used to select the channels to include in an event-
triggered conversion sweep, but that is outside the scope of this application note.

Care should be taken not to change any involved MUX settings when in free-running
mode, as this would corrupt conversion results.

2.10 Interrupts
To avoid having to poll a register to check when conversions are finished, the ADC
can be configured to issue interrupt requests upon conversion complete. This can be
used to do result processing using interrupt handler code while leaving the CPU
ready for other tasks most of the time.

For more information, please refer to the device datasheet or the application note
“AVR1305: Getting Started with the XMEGA Interrupt Controller”.

2.11 Result Comparator Interrupt
Instead of merely converting an input value, the ADC can be configured to compare
the result to a given value and only issue an interrupt or event when the result is
above or below that value. Interrupts on compare match (above/below) can be
configured individually on each channel, but the compare register is shared between
all four virtual channels.

Typical use of this feature is to leave one or more ADC channels in free-running
mode and configure the ADC to issue an interrupt when one of the input signals reach
a certain threshold.

 AVR1300

 11

8032B-AVR-08/09

2.12 Calibration
The ADC module has been calibrated during production of the device. This calibration
value is stored in the production signature row of the device. The calibration value
compensates for mismatch between the individual steps of the ADC pipeline and it
improves the linearity of the ADC.

The calibration value is not loaded automatically, and should always be loaded from
the production signature row (ADCxCAL0/1) and written to the corresponding ADC
calibration registers (CALL/CALH) before enabling the ADC.

Flowcharts for loading stored calibration settings are shown in Figure 2-9 below.

Figure 2-9. Using stored calibration settings

Write calibration
registers using stored

values

Enable ADC by setting
the ADCEN bit

Configure ADC

Stored calibration

ADC ready

The calibration value is factory calibrated to the datasheet accuracy, and is not
intended for user calibration.

The application note “AVR120: ADC Characteristics and Calibration” contains more
information on characteristics of ADCs and how to compensate for gain and offset
errors.

2.13 Improving accuracy
The accuracy of the XMEGA ADC depends on the quality of the input signals and
power supplies. The following items should be taken into consideration for best
possible accuracy of the ADC measurements:

• It is important to take great care when designing the analog signal paths like
analog reference (VREF) and analog power supply (AVCC).

• Try to toggle as few pins as possible while the ADC is converting to avoid
switching noise internally and on power supply. The ADC is most sensitive to
switching the I/O pins that are powered by the analog power supply
(PORTA/PORTB).

• Switch off unused peripherals by setting PRR registers to eliminate noise
from unused peripherals.

• Put the XMEGA in the “Idle” sleep mode directly after starting the ADC
conversion to reduce noise from the CPU.

12 AVR1300
8032B-AVR-08/09

• Use over-sampling to reduce increase resolution and eliminate random noise.

For randomly distributed noise using oversampling will help reducing any noise and
improve accuracy. Using 8x oversampling will increase resolution by 2 bits, and due
to the pipelined design of the ADC only take 8 additional ADC clock cycles.

See application note “AVR121: Enhancing ADC resolution by oversampling” for more
information on oversampling.

3 Getting Started
This section walks you through the basic steps for getting up and running with simple
conversion and experimenting with MUX settings. The necessary registers are
described along with relevant bit settings.

Note that this section only covers manual polling of status bits. Interrupt control is not
covered, but is an easy step after studying the application note “AVR1305: Getting
Started with the XMEGA Interrupt Controller”.

3.1 Single Conversion
Task: One single-ended conversion of ADC input 1 using virtual channel 2.

• Set the Input Mode bitfield (INPUTMODE) in Channel 2 Control Register (CH2CTRL)
equal to 0x01 to select single-ended input.

• Set the MUX Positive Input bitfield (MUXPOS) in Channel 2 MUX Control Register
(CH2MUXCTRL) equal to 0x01 to select ADC input 1.

• Set the Enable bit (ENABLE) in Control Register A (CTRLA) to enable the ADC
module without calibrating.

• Set the Start Conversion bit for channel 2 (CH2START) in Control Register A
(CTRLA) to start a single conversion.

• Wait for the Interrupt Flag bit for channel 2 (CH2IF) in the Interrupt Flags register
(INTFLAGS) to be set, indicating that the conversion is finished.

• Read the Result register pair for channel 2 (CH2RESL/CH2RESH) to get the 12-bit
conversion result as a 2-byte value.

3.2 Multiple Channels
Task: One single-ended conversion of ADC input 3 and 6 using virtual channel 1 and
3.

• Set the Input Mode bitfield (INPUTMODE) in Channel 1 Control Register (CH1CTRL)
and Channel 3 Control Register (CH3CTRL) equal to 0x01 to select single-ended
input on both channels.

• Set the MUX Positive Input bitfield (MUXPOS) in the MUX Control Register for
channel 1 and 3 (CH1MUXCTRL and CH3MUXCTRL) equal to 0x03 and 0x06
respectively.

 AVR1300

 13

8032B-AVR-08/09

• Set the Enable bit (ENABLE) in Control Register A (CTRLA) to enable the ADC
module without calibrating.

• Set the Start Conversion bit for channel 1 and 3 (CH1START and CH3START) in
Control Register A (CTRLA) to start two conversions.

• Wait for the Interrupt Flag bits for channel 1 and 3 (CH1IF and CH3IF) in the
Interrupt Flags register (INTFLAGS) to be set, indicating that the conversions are
finished.

• Read the Result register pair for channel 1 and 3 (CH1RESL/CH1RESH and
CH3RESL/CH3RESH) to get the 12-bit conversion results as 2-byte values.

3.3 Free-running Mode
Task: Free-running differential conversion on channel 0, using ADC0 and ADC3 as
positive and negative inputs.

• Set the MUX Positive Input and MUX Negative Input bitfields (MUXPOS and
MUXNEG) in Channel 0 (CH0MUXCTRL) to 0x00 and 0x03 respectively.

• Set the Free Run bit (FREERUN) in Control Register B (CTRLB) to enable free
running mode.

• Set the Enable bit (ENABLE) in Control Register A (CTRLA) to enable the ADC
module without calibrating.

• Optionally wait for the Interrupt Flag bit for channel 0 (CH0IF) in the Interrupt
Flags register (INTFLAGS) to be set, indicating that a new conversion is finished.
Clear the flag by writing a one to it, as it is going to be used later.

• Read the Result register pair for channel 0 (CH0RESL/CH0RESH) to retrieve the
latest 12-bit conversion results as a 2-byte value.

Note that it is not strictly required to wait for the interrupt flag when using free-running
mode. However, to make sure you have a fresh conversion, you should wait for the
flag, clear it and then read the result. Also note that it is recommended to use the
Free-running Mode together with DMA data transfer to offload work from the CPU.

4 Advanced Features
This section introduces more advanced features and possibilities with the ADC. In-
depth treatment is outside the scope of this application note and the user is advised
to study the device datasheet and relevant application notes.

4.1 DMA Controller
Instead of using interrupt handlers to read and process the result registers, it is
possible to use the XMEGA DMA Controller to move data from one or more result
registers to memory buffers or other peripheral modules. This moving of data is done
without CPU intervention, and leaves the CPU ready for other tasks, even without
having to execute interrupt handlers.

For more information, please refer to the device datasheet or the application note
“AVR1304: Getting Started with the XMEGA DMA Controller”.

4.2 Event System
To improve conversion timing and further offload work from the CPU, the ADC is
connected to the XMEGA Event System. This makes it possible to use incoming

14 AVR1300
8032B-AVR-08/09

events to trigger single conversions or conversion sweeps across several channels.
The ADC conversion complete conditions also serve as event sources available for
other peripheral modules connected to the event system.

For more information, please refer to the device datasheet or the application note
“AVR1001: Getting Started with the XMEGA Event System”.

5 Driver Implementation
This application note includes a source code package with a basic ADC driver
implemented in C and in Assembly. It is written for the IAR Embedded Workbench®
compiler.

Note that this ADC driver is not intended for use with high-performance code. It is
designed as a library to get started with the ADC. For timing and code space critical
application development, you should access the ADC registers directly. Please refer
to the driver source code and device datasheet for more details.

5.1 Files
The source code package consists of five files:

• adc_driver.c – ADC driver source file containing all the functions written in C.
• adc_driver.h – ADC driver header file.
• adc_driver_asm.S90 – ADC driver source file containing all the functions written in

Assembly for IAR Embedded Workbench.
• adc_driver_asm.h – ADC driver header file for the Assembly.
• adc_example_polled.c – Example code using the polled driver.
• adc_example_interrupt.c – Example code using the interrupt driver.

Note that the driver and example code does not include support for DMA data transfer
or the XMEGA Event System.
For a complete overview of the available driver interface functions and their use,
please refer to the source code documentation.

5.2 Doxygen Documentation
All source code is prepared for automatic documentation generation using Doxygen.
Doxygen is a tool for generating documentation from source code by analyzing the
source code and using special keywords. For more details about Doxygen please visit
http://www.doxygen.org. Precompiled Doxygen documentation is also supplied with
the source code accompanying this application note, available from the readme.html
file in the source code folder.

8032B-AVR-08/09

Disclaimer
Headquarters International

Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

 Atmel Asia
Unit 1-5 & 16, 19/F
BEA Tower, Millennium City 5
418 Kwun Tong Road
Kwun Tong, Kowloon
Hong Kong
Tel: (852) 2245-6100
Fax: (852) 2722-1369

Product Contact

Atmel Europe
Le Krebs
8, Rue Jean-Pierre Timbaud
BP 309
78054 Saint-Quentin-en-
Yvelines Cedex
France
Tel: (33) 1-30-60-70-00
Fax: (33) 1-30-60-71-11

Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

 Web Site
http://www.atmel.com/

Technical Support
avr@atmel.com

Sales Contact
www.atmel.com/contacts

 Literature Request
www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND
CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS,
BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the
contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any
commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in,
automotive applications. Atmel’s products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© 2009 Atmel Corporation. All rights reserved. Atmel®, Atmel logo and combinations thereof, AVR® and others, are the registered
trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

	1 Introduction
	2 Module Overview
	2.1 Pipeline Architecture and Virtual Channels
	2.2 Gain Stage
	2.3 Conversion Mode
	2.4 Multiplexer Settings
	2.4.1 Differential Input
	2.4.2 Differential Input with Gain Stage
	2.4.3 Single-ended Input
	2.4.4 Internal Input

	2.5 Conversion Result
	2.5.1 Signed mode
	2.5.2 Unsigned mode

	2.6 Result Presentation
	2.7 Voltage References
	2.8 Conversion Speed
	2.9 Free-running Mode
	2.10 Interrupts
	2.11 Result Comparator Interrupt
	2.12 Calibration
	2.13 Improving accuracy

	3 Getting Started
	3.1 Single Conversion
	3.2 Multiple Channels
	3.3 Free-running Mode

	4 Advanced Features
	4.1 DMA Controller
	4.2 Event System

	5 Driver Implementation
	5.1 Files
	5.2 Doxygen Documentation

